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ABSTRACT

We consider the cardinal invariant CG(X) of the minimal number of

weakly compact subsets which generate a Banach space X. We study the

behavior of this index when passing to subspaces, its relation with the

Lindelöf number in the weak topology and other related questions.

Introduction

A Banach space is weakly compactly generated if there is a weakly compact

subset which is linearly dense and weakly Lindelöf if it is a Lindelöf space in

its weak topology. Corson [10] asked what the relation was between these two

concepts. The answer was that every weakly compactly generated space is

weakly Lindelöf but the converse is not true, and in order to clarify what was in

the middle the class of weakly K-analytic was introduced by Talagrand [18] who,

together with Pol [15], was the first to solve this problem. Here we shall analyze

the question of Corson from a more general point of view: What is the relation

between the number of weak compacta which are necessary to generate a Banach

space and the Lindelöf number of the space in the weak topology? Again, an

intermediate class analogous to that introduced by Talagrand plays a clarifying

role in the theory. Thus, our starting point is the following (cf. Sections 1 and 2

for notation):
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Definition 1: Let X be a topological space.

(1) The index of compact generation of X , CG(X), is defined as the least

infinite cardinal κ such that there exists a family {Kλ : λ < κ} of compact

subsets of X whose union is a dense subset of X .

(2) The index of K-analyticity of X , ℓK(X), is the least infinite cardinal κ

for which there exists a complete metric space M of weight κ and an usco

M −→ 2X .

(3) The Lindelöf number of X , ℓ(X), is the least infinite cardinal κ such that

any cover of X by open sets has a subcover with at most κ many sets.

If X is a Banach space, all the indices will refer always to the weak topology

of X . In this way the classes of weakly compactly generated, weakly K-analytic

and weakly Lindelöf Banach spaces equal the classes of spaces X such that

CG(X) = ω, ℓK(X) = ω and ℓ(X) = ω respectively. Similar indices to ℓK(X)

can be defined if instead of complete metric spaces of a given weight we use

other classes of topological spaces. These kind of indices have been studied in

[13], cf. [9], such as the index of K-determinacy ℓΣ(X) (taking in (2) arbitrary

metric spaces of weight κ instead of complete metric spaces) and the Nagami

index Nag(X) (taking arbitrary completely regular topological spaces of weight

κ). For any Banach space X we have

ℓ(X) ≤ Nag(X) ≤ ℓΣ(X) ≤ ℓK(X) ≤ CG(X).

The first inequality can be found in [9] and follows from the fact that the

Lindelöf number cannot increase by an usco image. The others are self-evident

except perhaps the last one, cf. Section 6 below. This gives a first answer to our

original question: the number of weak compacta which are necessary to generate

a Banach space is not lower than the Lindelöf number in the weak topology, in

short ℓ(X) ≤ CG(X). On the other hand, we shall show that CG(X) may be

arbitrarily larger than ℓ(X), namely in Section 5 we prove:

Theorem 2: Let κ be any cardinal. There exists a weakly Lindelöf determined

Banach space X such that CG(X) > κ.

Weakly Lindelöf determined spaces constitute a special class of weakly

Lindelöf Banach spaces [2]. The relation of CG(X) with the other indices is

quite different because the cardinality of a completely regular space of weight κ

is at most 2κ, so CG(X) ≤ 2Nag(X), and by the same reason CG(X) ≤ ℓΣ(X)ω.

Another classical question is the fact, first shown by Rosenthal [17], that

there are subspaces of weakly compactly generated spaces which are not weakly
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compactly generated. It has been observed in [5] that such spaces must have

large enough density character, namely greater than or equal to cardinal b.

In Section 7, we address the natural question now: What is the relation be-

tween CG(X) and CG(Y ) for Y a subspace of X? and what about the density

character? The answer we give is the following:

Theorem 3: Let κ, τ, δ be infinite cardinals. The following are equivalent:

(1) τ ≤ d(κ) and δ ≥ bκ(τ).

(2) There exists a Banach space X and a subspace Y of X such that

CG(X) = κ, CG(Y ) = τ and dens(Y ) = δ.

The cardinal numbers d(κ) and bκ(τ) are defined in Section 1 in terms of the

topology of the space κω. For cardinals κ, τ ≥ 2ω, it happens that d(κ) = κω and

bκ(τ) = τ but for cardinals below the continuum the behavior of this functions

is more complicated and depends heavily on the axiomatic settlement. The

fact that (1) implies (2) in Theorem 3 is obtained by modifying an example of

Argyros [11, Section 1.6] while the converse is based on the use of the index

K-analyticity. We indeed establish in Section 6 a very similar result to Theorem

3 concerning the relation of the indices ℓK(X) and CG(X):

Theorem 4: Let κ, τ, δ be infinite cardinals. The following are equivalent:

(1) κ ≤ τ ≤ d(κ) and δ ≥ bκ(τ).

(2) There exists a Banach space X such that ℓK(X) = κ, CG(X) = τ and

dens(X) = δ.

Here, the fact that (1) implies (2) is obtained by modifying the construction

of Talagrand [18] of a weakly K-analytic space which is not weakly compactly

generated. It remains unclear to us what are the precise relations between the

indices ℓK(X), ℓΣ(X) and Nag(X) for Banach spaces. We make some remarks

about that in Section 8.

Acknowledgement: We want to express our gratitude to Bernardo Cascales

and José Orihuela for their help and support during this work, as well as to David

Fremlin for valuable comments and suggestions.

1. Cardinal numbers and metric spaces

In this section we fix the notation about cardinal arithmetic and metric spaces,

and we shall define and discuss some cardinal numbers which will be used in

Sections 6 and 7. A cardinal number κ is identified with the set of all ordinals

less than κ, and in particular κ is a set of cardinality κ, and is considered also
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as a topological space endowed with the discrete topology. By κω we denote the

set of all sequences of elements of κ endowed with the product topology (with

respect to the discrete topology on each factor), as well as the cardinality of this

set. Finally, 2A stands for the family of all subsets of A, and when A = κ is a

cardinal, 2κ also denotes the cardinality of this set.

Definition 5: Let κ be a cardinal number:

(1) The cardinal d(κ) is defined as the least cardinal λ such that κω is the

union of λ many compact subsets.

(2) Let τ be a cardinal such that τ ≤ d(κ). The cardinal bκ(τ) is the least

cardinal λ for which there exists a set A of cardinality λ such that A is

not contained in any union of less than τ many compact subsets of κω.

Notice that always κ ≤ d(κ) ≤ κω and τ ≤ bκ(τ) ≤ κω, and that bκ(τ) = τ

if τ ≤ κ (we can consider A a closed and discrete subset of κω of cardinality

τ). Every compact metrizable space is either countable or has cardinality 2ω,

hence d(κ) = κω whenever κ > 2ω and bκ(τ) = τ whenever 2ω < τ ≤ d(κ).

On the other hand, if cof(κ) > ω then κω =
⋃

α<κ αω , and this fact implies

that d(κ) =
∑

α<κ d(|α|). The difficult case in computing d(κ) is when κ is

a cardinal of cofinality ω less than 2ω. For example, when κ = ω we refer to

[20] for information about cardinal d = d(ω). We illustrate also the situation

for κ = ωω, for which we need the following observation, pointed out to us by

David Fremlin:

Proposition 6: For an infinite cardinal κ, d(κ) = max[d, cf([κ]≤ω)], where

cf([κ]≤ω) is the least cardinality of a cofinal family A of countable subsets of

κ, that is, a family such that every countable subset of κ is a subset of some

member of A.

We mention that Shelah has obtained that cf([ωω]≤ω) < ωω4
, cf. [8]. The

proof of Proposition 6 is not difficult: if B is a family of compact sets covering

κω, then the family A = {{xn : x = (xi)i<ω ∈ K, n < ω} : K ∈ B} is a

cofinal family of countable subsets of κ, and conversely if A is a cofinal family

of countable subsets of κ and for every s ∈ A, Cs is a family of d many compact

sets covering sω, then B =
⋃

s∈A Cs is a family of compact sets covering κω.

About cardinals bκ(τ) we know very little more except for b = bω(ω1) [20]

and the fact that in some cases we can establish a relation with the known b,

for example b ≤ bω(ω2) = bω1
(ω2) provided ω1 < d.
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2. The K-analyticity index

If Σ and Y are topological spaces, we will say that a map φ: Σ −→ 2Y is an

usco if the three following conditions are satisfied:

(1) φ(σ) is a compact subset of Y , for every σ ∈ Σ.

(2) For every open subset U of Y , the set {σ ∈ Σ : φ(σ) ⊆ U} is an open

subset of Σ.

(3)
⋃

σ∈Σ φ(σ) = Y .

In this situation, if A is a subset of Σ, we denote φ(A) =
⋃

{φ(σ) : σ ∈ A}.

We recall that any complete metric space X of weight κ is a continuous

image of a closed subset M of κω: One considers a base {Oλ : λ < κ} of X

and M = {x ∈ κω : diam(Oxn
) < 1/n, Oxn+1

⊂ Oxn
}. In addition, for M

a closed subset of κω there is retract p: κω −→ M [12, Proposition 2.8]. In

particular, ℓK(Y ) ≤ κ if and only if there is an usco κω −→ 2Y . The following

two properties that we shall use can be found in [9] proven for the index ℓΣ(X)

but the proof for ℓK(X) is completely analogous (as usual, Cp(K) stands for the

space of continuous functions over K endowed with the pointwise convergent

topology):

Proposition 7: Let X be a Banach space and K a compact space.

(1) If Y is a closed subspace of X , then ℓK(Y ) ≤ ℓK(X).

(2) If Y is a total subset of X , then ℓK(X) ≤ ℓK(Y ).

(3) If Y is a subset of C(K) which separates the points of K, then ℓK(C(K)) =

ℓK(Cp(K)) ≤ ℓK(Y, τp).

3. The compact generation index

In this section we state some main properties of the index CG(X) on Banach

spaces which are analogous to well known properties of weakly compactly gener-

ated spaces. The first observation is that for a Banach space X , CG(X) equals

the least infinite number of weakly compact subsets of X whose union is linearly

dense in X , X = span
⋃

λ<κ Kλ, since if
⋃

i<κ Ki is a family of compacta whose

union is linearly dense, we define KF = |F |co
⋃

i∈F Ki for each finite subset F

of κ, and then we have another family of the same cardinality whose union is

dense. In the following Theorem 8 we introduce and expose the main proper-

ties of κ-Eberlein compacta, which generalize well known facts about Eberlein

(ω-Eberlein under this notation) compacta:
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Theorem 8: Let K be a compact space and κ an infinite cardinal. The follow-

ing are equivalent:

(1) CG(C(K)) ≤ κ.

(2) CG(Cp(K)) ≤ κ.

(3) K is a subspace of a product
∏

α<κ Kα of κ many factors in which each

Kα is an Eberlein compact.

(4) The space can be found as a subset K ⊂ [0, 1]Γ so that Γ =
⋃

λ<κ Γλ, and

for every x ∈ K and every λ < κ, the set {γ ∈ Γλ : xγ 6= 0} is finite.

When these conditions are satisfied, we say that K is a κ-Eberlein compact.

Proof: That (1) implies (2) is clear since the weak topology is finer than the

pointwise topology. That (2) implies (3): if CG(Cp(K)) ≤ κ then we have

a family {Sλ : λ < κ} of compact subsets of Cp(K) whose union is dense in

Cp(K). In this situation each compact Kλ, defined as the quotient of K by

the relation x ∼ y iff f(x) = f(y) for all f ∈ Sλ, is an Eberlein compact since

Sλ is a pointwise compact subset of continuous functions that separates the

points of Kλ and, on the other hand, K is a subspace of
∏

λ<κ Kλ. That (3)

implies (4) follows immediately from the well known fact, a consequence of the

Amir–Lindenstrauss Theorem [1], that K is Eberlein compact if and only if it

verifies (4) for κ = ω. For (3) implies (1), K is a subspace of L =
∏

α<κ Kα

where each Kα is Eberlein compact. Since (C(K), w) is a continuous image of

(C(L), w) it is enough to see that CG(C(L)) ≤ κ. For each finite subset F

of κ we consider KF =
∏

α∈F Kα which is an Eberlein compact. The natural

projection L −→ KF induces a one-to-one operator T : C(KF ) −→ C(L), and

since C(KF ) is weakly compactly generated, CG(T (C(KF ))) = ω. The Stone–

Weierstrass theorem implies that
⋃

{T (C(KF )) : F ∈ [κ]<ω} is dense in C(L),

so CG(C(L)) ≤ κ.

Theorem 9: A Banach space X is a subspace of a Banach space Y with

CG(Y ) ≤ κ if and only if (BX∗ , w∗) is κ-Eberlein.

Proof: If K = (BX∗ , w∗) is κ-Eberlein, then CG(C(K)) ≤ κ and X is a sub-

space of C(K). Conversely, let {Yα}α<κ be a union of κ weakly compactly

generated subspaces of Y which is linearly dense in Y . By the Theorem of Amir

and Lindenstrauss [1], for every α there is a one-to-one weak∗-to-pointwise con-

tinuous operator of norm 1, Tα: Y ∗
α −→ c0(Γα), which induces by composition

a weak∗-to-pointwise continuous operator T ′
α: Y ∗ −→ c0(Γα). Finally, we have

a one-to-one weak∗-to-pointwise continuous function
∏

Tα: Y ∗ −→
∏

c0(Γα)
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which implies that BY ∗ is a κ-Eberlein compact in the weak∗ topology. Since

BX∗ is a continuous image of BY ∗ it remains to show that:

Theorem 10: Any continuous image of a κ-Eberlein compact is κ-Eberlein

compact.

Unlike the previous results, now Theorem 10 cannot be easily deduced from

the well known (and difficult) particular case in which κ = ω. We must instead

adapt the arguments of the countable case to this more general context. We

know at least two ways to do this but since we do not need here this result,

and in any case its proof does not require really new ideas but just substituting

some appearance of the countable power by an arbitrary κ, we just indicate

how this can be done. One possibility is to follow the proof of [7] changing in

the appropriate places the role of convergent sequences by nets indicated in the

lattice of finite subsets of κ. For the other argument, we recall that a κ-Corson

compact is a compact space which can be found as a subspace K ⊂ R
Γ such

that for every x ∈ K, |{γ ∈ Γ : xγ 6= 0}| ≤ κ. It is a consequence of a result

of Bell and Marciszewski [6], who generalized an argument by Pol [16], that the

continuous image of a κ-Corson compact is κ-Corson. On the other hand, if in

the terminology of [14] we define a κ-quasi-RN compact to be a compact whose

diagonal is the intersection of κ-many almost neighborhoods of the diagonal,

then following analogous arguments as in [4] and [14] it is possible to prove that

the continuous image of a κ-quasi-RN compact is again κ-quasi-RN and that a

compact space is κ-Eberlein if and only if it is κ-Corson and κ-quasi-RN.

We point out that the mentioned result of [6] also says that ℓ(Cp(K)) ≤ κ

whenever K is a κ-Corson compact and, as a consequence, if the dual unit ball of

a Banach space X is a κ-Corson compact in its weak∗ topology, then ℓ(X) ≤ κ.

4. Adequate families

The examples which we shall present will be based on adequate families of sets, a

concept introduced by Talagrand [18], precisely to provide this kind of examples

in the countable case. We state in this section, for the reader’s convenience, the

facts about this construction that we shall need. A family of subsets A of a

given set ∆ is called an adequate family if for every A, A belongs to A if and

only if every finite subset of A belongs to A. Associated to such a family, we

have the compact space KA ⊂ {0, 1}∆ of the characteristic functions of elements

of A. The key fact proved by Talagrand is:
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Theorem 11: If ∆ is a topological space and A is an adequate family of subsets

of ∆ which consists only of closed subsets of ∆, then there is an usco map

φ: ∆ −→ 2X with X a point-separating subset of Cp(KA).

Namely X = ∆∪{0} is the point-separating subset of Cp(KA) whose pointwise

topology is the narrowest such that each set A ∈ A is closed and the usco map

is ∆ −→ 2X given by δ 7→ {0, δ}. Making use of Proposition 7 we get:

Corollary 12: If Σ is a complete metric space of weight at most κ and A is

an adequate family of closed subsets of Σ, then ℓK(C(KA)) ≤ κ.

We will also make use of the following fact:

Theorem 13: Let A an adequate family of subsets of a set ∆ and suppose that

KA is a κ-Eberlein compact. Then, there exists a decomposition ∆ =
⋃

λ<κ ∆λ

such that for every x ∈ KA and every λ < κ, x has only finitely many nonzero

coordinates in ∆λ.

The proof is analogous to that of [11, Theorem 3.4.2], just changing countable

families by families of cardinality at most κ where necessary.

5. Weakly Lindelöf determined spaces of arbitrarily high compact

generation index

In the following lemma, we state a standard fact of cardinal arithmetics which

is important for all the discussions afterwards, namely that there are arbitrarily

large cardinals τ with τ < τω .

Lemma 14: Let {κn}n<ω be a sequence of cardinals such that κn+1 > κn for

every n < ω, and let τ be the supremum of this sequence. Then τω > τ . In

particular, for any cardinal κ there exists a cardinal τ > κ such that τ < τω .

Proof: Suppose that τω = τ and let f : τ −→ τω be a surjection from τ onto

the set of sequences of elements of τ , α 7→ f(α) = (f(α)n)n<ω. For every n < ω

the set An = {f(α)n : α < κn} has cardinality less than or equal to κn < τ ,

hence we can choose βn ∈ τ \An. The sequence β = (βn)n<ω is not in the image

of f which is a contradiction. The reason is that if β = f(α) for some α < τ ,

then there exists n < ω with α < κn and therefore βn = f(α)n ∈ An, which is

absurd.

Proof of Theorem 2: It is a consequence of Lemma 14 that there exists a met-

ric space Z which cannot be expressed as the union of κ many discrete subsets.
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Indeed, if κ < τ < τω , then Z = τω has this property since the weight of

Z is τ so its discrete subsets have cardinality less than or equal to τ . From

such a metric space Z, we shall construct a Corson compact space K which is

not κ-Eberlein. The construction is in a similar spirit as those carried out in

[2] to give several examples of Corson compacta with specific properties. We

consider a well order < on Z. Set A the family of all subsets A of Z such

that each finite subset is of the form {ξ1 < · · · < ξn} with d(ξi, ξj) ≤ 1/i for

i < j. Notice that this is an adequate family and that every set A ∈ A is

either finite or countable. Indeed the order type of any A ∈ A in the well or-

der < cannot be greater than ω + 1 because if {ξ1 < ξ2 < · · · < ξω < ξω+1}

belongs to A, then ξω = limn−→∞ ξn = ξω+1 which is a contradiction. Hence,

K = KA ⊂ {0, 1}Z is a Corson compact and we shall see that it is not

κ-Eberlein compact. Namely, if it were κ-Eberlein, by Theorem 13 there should

be a decomposition Z =
⋃

λ<κ Zλ such that each A ∈ A has only finitely many

elements in each Zλ. We can choose λ with Zλ not discrete and take z an ac-

cumulation point of Zλ. We shall find an infinite subset of Zλ which belongs to

A, thus getting a contradiction. We take ξ1 the first element of Zλ such that

ξ1 ∈ B(z, 1) (we are denoting by B(x, ε) the open ball with center x and radius

ε in the space Z). Second, we take ξ2 the first element in Zλ greater than ξ1

such that ξ2 ∈ B(z, 1
2 )∩B(ξ1, 1). In the n-th step, if ξ1 < · · · < ξn−1 have been

defined we choose ξn to be the first element of Zλ greater than ξn−1 such that

ξn ∈ B(z, 1/n) ∩
⋂n−1

i=1 B(ξi, 1/i). After this construction, {ξn : n < ω} is an

infinite element of A inside Zλ.

We set X = C(K) with K the compact space defined above. Since K is not κ-

Eberlein, CG(X) > κ. On the other hand, it has been proved in [3, Proposition

4.10] that if K is a compact subset of {0, 1}α such that the order type of the

supports of all elements of K is uniformly bounded by a countable ordinal, then

C(K) is weakly Lindelöf determined.

Since always CG(X) ≤ 2Nag(X) and CG(X) ≤ ℓΣ(X)ω, Theorem 2 also

shows that there are weakly Lindelöf determined Banach spaces of arbitrarily

large indices Nag(X) and ℓΣ(X). The Banach spaces such that ℓΣ(X) = ω (or

equivalently Nag(X) = ω) are called weakly countably determined [18]. Hence,

for κ ≥ 2ω, Theorem 2 provides examples of weakly Lindelöf determined Ba-

nach spaces which are not weakly countably determined and of Corson compact

spaces which are not Gul’ko compact.
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6. The relation between the compact generation index and the K-

analyticity index

Notice first that if a topological space Y is the union of τ many compacta

{Kλ}λ<τ , then ℓK(Y ) ≤ τ because we can get an usco φ: τ −→ 2Y by φ(λ) =

Kλ. Using Proposition 7 we get as a consequence that for any Banach space X :

(6.1) ℓK(X) ≤ CG(X).

On the other hand, if ℓK(X) ≤ κ then there is an usco φ: κω −→ 2X and

since the continuous image of a compact space by an usco is compact and κω is

the union of d(κ) many compacta,

(6.2) CG(X) ≤ d(ℓK(X)).

Finally, the last relation is that for any Banach space X ,

(6.3) dens(X) ≥ bℓK(X)(CG(X)).

We prove it by contradiction. Suppose the contrary and set δ = dens(X),

κ = ℓK(X) and τ = CG(X) so that δ < bκ(τ). We have an usco φ: κω −→ 2X

and we can find a subset Σ ⊂ κω of cardinality δ such that φ(Σ) is dense in X .

Since δ < bκ(τ), Σ is a subset of a union of less than τ many compact subsets

of κω, so CG(X) < τ , a contradiction.

Relations (6.1)–(6.3) already prove one implication of Theorem 4. Before

passing to the converse, we make an observation about the evaluation of the

indices on a generalized Cantor cube: For K = {0, 1}κ and X = C(K) we have

that ℓ(X) = ℓK(X) = CG(X) = κ. On the one hand, clearly {0, 1}κ is κ-

Eberlein. On the other hand, the evaluation maps D = {δx : x ∈ κ} constitute

a discrete pointwise closed subset of C({0, 1}κ), so ℓ(D) = κ and ℓ(X) ≥ κ.

Now we fix cardinals κ, τ and δ as in part (1) of Theorem 4 and we will show

a Banach space as in part (2). First, we take S a subset of κω of cardinality

bκ(τ) which can be decomposed into τ many pieces S =
⋃

λ<τ Sλ verifying the

following two properties:

(S.1) Sλ is not contained in any union of less than τ many compacta of κω.

(S.2) There is a subset U ⊂ S of cardinality κ such that |U ∩ Sλ| ≤ 1 for all λ

and such that x0 6= y0 for any two different elements x, y ∈ U .

We can construct such an S as follows: Take A a subset of κω of cardinality

bκ(τ) which cannot be covered by less than τ many compacta of κω and A′ =

{aλ : λ < τ} a subset of A of cardinality τ . Without loss of generality, we
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suppose that the set U = {x ∈ κω : x0 = xn ∀n < ω} of the constant sequences is

a subset of A′. For λ < τ , we define Sλ = {x ∈ κω : x2n = (aλ)n, (x2n+1)n∈ω ∈

A} and S =
⋃

λ<τ Sλ.

We construct now a compact space inspired by the example of Talagrand

[18] of a Talagrand non-Eberlein compact. Consider A the family of all subsets

A ⊂ S which verify the two following properties:

(A.1) There exists some n(A) < ω such that for all different elements x, y ∈ A,

we have xn(A) 6= yn(A) but xm = ym for all m < n(A).

(A.2) |A ∩ Sλ| ≤ 1 for every λ < τ .

This A is an adequate family which consists of closed subsets of S, hence the

compact space L = KA ⊂ {0, 1}S is a κ-Talagrand compact, by Corollary 12.

We define Y = C(L), so that ℓK(Y ) ≤ κ. Indeed, ℓK(Y ) = κ because if U is a

set as in (S.2), then all subsets of U belong to A and there is therefore a copy

of {0, 1}κ inside L and, as we observed, ℓK(C({0, 1}κ) = κ.

On the other hand, property (A.2) implies that L ⊂ {0, 1}S is a τ -Eberlein

compact (indeed the partition S =
⋃

λ<τ Sλ fulfills the conditions in Theorem

8(4)) and hence, CG(Y ) ≤ τ . We check now that precisely CG(Y ) = τ . Assume

by contradiction that L is τ ′-Eberlein for some τ ′ < τ . Then by Lemma 13 we

would find a partition S =
⋃

i<τ ′ ∆i such that each element of L has only

finitely many nonzero coordinates in each ∆i. Let us analyze for a moment

what this condition on ∆i means. For a subset F of κn, we denote F × κ>n =

{x ∈ κω : (x0, . . . , xn−1) ∈ F} and if G ⊂ κm with m > n we write F < G

if the restrictions of the elements of G to the first n coordinates constitute

precisely the set F . The fact that we cannot find an infinite subset A of ∆i

satisfying (A.2) and also (A.1) with n(A) = 0 implies that there exist finite sets

F0 ⊂ κ and G0 ⊂ τ such that ∆i ⊂ F0 × κ>0 ∪
⋃

λ∈G0
Sλ. Analogously, paying

attention in each step to sets A with n(A) = n, we can find inductively for every

n < ω finite sets Fn ⊂ κn and Gn ⊂ τ such that Fn−1 < Fn, Gn−1 ⊂ Gn and

∆i ⊂ Fn × κ>n ∪
⋃

λ∈Gn
Sλ. This implies that for every i < τ ′ we can find a

compact set Ki =
⋂

n<ω Fn × κ>n of κω and a countable set Gi ⊂ τ such that

∆i ⊂ Ki ∪
⋃

λ∈Gi
Sλ. Hence,

S =
⋃

i<τ ′

Ki ∪
⋃

λ∈
⋃

i<τ′ Gi

Sλ.

Since |
⋃

i<τ ′ Gi| ≤ τ ′ ·ω < τ , we can take λ0 6∈
⋃

i<τ ′ Gi and then Sλ0
is covered

by τ ′ < τ compact subsets of κω, a contradiction.

So far, we know that ℓK(Y ) = κ and CG(Y ) = τ . Since |S| = bκ(τ), this is
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the weight of L ⊂ {0, 1}S (it could not be lower because of the general relation

(6.3)), hence dens(Y ) = bκ(τ).

Finally, we consider the space X = C(L) ⊕ c0(δ). The space c0(δ) is weakly

compactly generated, so CG(c0(δ)) = ω = ℓK(c0(δ)) and dens(c0(δ)) = δ. All

these indices, when considered on a finite product, take as value the maximum

of the value of each factor, so X is the space we were looking for.

7. The number of compact spaces which generate a subspace

This section is devoted to the proof of Theorem 3. The situation is very similar

to the previous section. Let us assume that we are in the situation of part (2)

of Theorem 3. That τ ≤ δ is evident. Since Y is a closed subspace of X , then

ℓK(Y ) ≤ ℓK(X) and, from this and (6.2), we have that

τ = CG(Y ) ≤ d(ℓK(Y )) ≤ d(ℓK(X)) = d(κ),

and since ℓK(Y ) ≤ κ, by (6.3),

δ = dens(Y ) ≥ bℓK(Y )(CG(Y )) = bℓK(Y )(τ) ≥ bκ(τ).

For the converse, if τ < min(κ, δ), it is enough to take X = C({0, 1}κ)⊕ c0(δ)

and Y = C({0, 1}τ) ⊕ c0(δ). So we assume from now on that κ ≤ τ ≤ d(κ)

and δ ≥ bκ(τ), and we will adapt an example of Argyros [11, Section 1.6] by

similar modifications as in the proof of Theorem 4. First, as in that proof, we

take a subset S of κω of cardinality bκ(τ) which can be decomposed into τ

many pieces S =
⋃

λ<τ Sλ verifying (S.1) and (S.2). We consider the compact

space K ⊂ [0, 1]S which consists of the function of the form 1
n
χA (χA is the

characteristic function of the set A) for some natural number n and some set A

satisfying:

(B.1) For all different elements x, y ∈ A, we have xn 6= yn but xm = ym for all

m < n.

(B.2) |A ∩ Sλ| ≤ 1 for every λ < τ .

We note that the decomposition S =
⋃

t∈κn{σ ∈ S : σ|n = t} verifies the

conditions of Theorem 8(4) for ε = 1/n, so K is a κ-Eberlein compact and

since, again, it contains a copy of {0, 1}κ, CG(C(K)) = κ. For every σ ∈ S

we consider the “projection” function fσ ∈ C(K) and we set Y the subspace

generated by {fσ : σ ∈ S}. For every λ < τ , it follows from condition (B.2)

that {fσ : σ ∈ Sλ}∪{0} is a pointwise (hence weakly) compact subset of C(K).

Therefore, CG(Y ) ≤ τ . We suppose by contradiction that CG(Y ) = θ < τ . The
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rest of the proof follows closely that of [11, Theorem 1.6.3]. As a consequence of

the Amir–Lindenstrauss Theorem, we can find then a set of generators of Y like

{yδ : δ ∈ ∆} such that ∆ =
⋃

η<θ ∆η and {yδ : δ ∈ ∆η} ∪ {0} is homeomorphic

in the weak topology to the one compactification of a discrete set, the point of

infinity being 0. We define a function F : S × ∆ −→ R like F (σ, δ) = yδ(χ{σ}).

Statement 1: For every σ ∈ S, 1 ≤ |{δ ∈ ∆ : F (σ, δ) 6= 0}| ≤ θ. Namely, if that

set were empty, since {yδ : δ ∈ ∆} generates Y it would mean that y(χ{σ}) = 0

for all y ∈ Y , which is false for y = fσ. On the other hand, since 0 is the “weak

limit point” of {yδ : δ ∈ ∆η} each set {δ ∈ ∆η : |F (σ, δ)| > 1/m} is finite.

Statement 2: For every δ ∈ ∆, |{σ ∈ S : F (σ, δ) 6= 0}| ≤ ω. Indeed, each

{σ ∈ S : |F (σ, δ)| > 1/m} is finite because we can find an element y ∈ Y which

is a linear combination of some fσ1 , . . . , fσk with | y − yδ| < 1/2m and in this

case, whenever |F (σ, δ)| > 1/m, it must be the case that σ = σi for some i ≤ k.

From these two statements, playing back and forth we find a partition S =
⋃

α<λ Γα and disjoint sets ∆α, all sets of cardinality at most θ such that when-

ever F (σ, δ) 6= 0 then there exists α < λ such that σ ∈ Γα and δ ∈ ∆α.

Since |Γα| ≤ θ we can enumerate it as {σα
ν : ν < θ} (with repetitions if

necessary). Then, we set Σν = {σα
ν : α < λ} so that S =

⋃

ν<θ Σν . Further, for

ν < θ, m ∈ N and η < θ we set

Σνmη = {σ ∈ Γν : ∃δ ∈ ∆η : yδ(χ{σ}) > 1/m}.

By statement 1, Σν =
⋃

mη Γνmη and moreover S =
⋃

ν<θ,m<ω,η<θ Σνmη.

We proved in the previous section that for such a decomposition of S into

θ < τ pieces, there must exist ν, m and η such that Σνmη is not contained

in a compact subset of κω, and this implies that, for some n < ω there is an

infinite set A satisfying (B.1) and (B.2) which is contained in Σνmη; call it

A = {σi : i < ω}. Call αi the only ordinal such that σi ∈ Γαi
. Since A ⊂ Σν ,

σi = σαi
ν and if i 6= j then αi 6= αj . Also, since A ⊂ Σνmη for every i, there

exists δi ∈ ∆η such that yδi
(χ{σi}) > 1/m. Notice that if i 6= j then δi ∈ ∆αi

,

so δi 6∈ ∆αj
and yδi

(χ{σj}) = 0.

Let now B be a finite subset of A. Then, for every σ ∈ Σ we have

fσ(
1

l
χB) =

1

l
χB(σ) =

1

l

∑

σ′∈B

χ{σ′}(σ) =
1

l

∑

σ′∈B

fσ(χ{σ′}).

Hence, y(1
l
χB) = 1

l

∑

σ′∈B y(χ{σ′}) for every y ∈ Y . Now let B1 ⊂ B2 ⊂ · · ·

be a sequence of finite subsets of A whose union is A. Then 1
l
χBj

−→ 1
l
χA and
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so
∣

∣

∣
yδi

(1

l
χA

)∣

∣

∣
= lim

j−→∞

∣

∣

∣
yδi

(1

l
χBj

)∣

∣

∣
=

1

l
|yδi

(χ{σi})| >
1

lm
.

This is a contradiction since {δi : i < ω} ⊂ ∆η, so it weakly converges to 0.

8. Remarks on other indices

The only example that we know of a Banach space X in which ℓΣ(X) < ℓK(X)

is one of Talagrand [19], a variation of which can be taken of density character

ω1, cf. [5]. In this case ℓΣ(X) = ω < ω1 = ℓK(X). The “enlargement” of such

an example offers a number of difficulties and we do not even know whether

there exists some Banach space X with ω < ℓΣ(X) < ℓK(X).

About the Nagami index, an example of a topological space Y with Nag(Y ) <

ℓΣ(Y ) is provided in [9]. We shall provide next examples of this kind for spaces

of the form Y = Cp(K) with K compact. This does not yet provide examples of

Banach spaces for which the two indices do not coincide, because it is not clear

whether the Nagami index coincides for the weak and the pointwise topology:

the proof of the fact that ℓΣ(C(K)) = ℓΣ(Cp(K)) [9] depends heavily on the

fact that closure points in metric spaces are limits of sequences.

Theorem 15: Let κ be any infinite cardinal. Then there exists a compact

space K with Nag(Cp(K)) ≤ κ < CG(Cp(K)).

We already observed that we always have CG(X) ≤ ℓΣ(X)ω, so when κ = κω

the compactum of Theorem 15 verifies Nag(Cp(K)) < ℓΣ(Cp(K)).

Proof: Consider the space T = κκ (the product of κ many discrete spaces of

size κ) which has weight κ. We consider the adequate family A of all subsets

A of T such that there is λ < κ such that for any x 6= y in A, x|[0,λ) = y|[0,λ)

and xλ 6= yλ. We take K = KA. We know from Theorem 11 that there is

an usco T −→ 2Y with Y a subset of Cp(K) that separates the points of K.

In an analogous way as it is proven for the index ℓΣ(X) [9], this implies that

Nag(Cp(K)) ≤ κ. Suppose now that K were κ-Eberlein. Then, by Theorem 13,

we should be able to find a decomposition T =
⋃

i<κ Ti such that any set of A has

only finitely many elements in each Ti. We will find t ∈ T = κκ such that t 6∈ Ti

for any i < κ, thus obtaining a contradiction. We define it inductively. The set

{x0 : x ∈ T0} ⊂ κ is finite so we may take t0 out of it. This will guarantee that

t 6∈ T0. If we already defined tj for j < i, the set {xi : x ∈ Ti and xj = tj∀j < i}

is finite, so we can choose ti out of it. This guarantees that t 6∈ Ti.
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